

0

UMassAmherst

Introduction

- In several cases, it is desirable to evaluate a signal in the frequency domain as it gives a more insightful information about it.
- A few use cases of FFT:
- audio processing to clear noise
- image processing to smooth images
- OFDM (used in cellular communication)
- speech recognition
- audio fingerprinting (apps like Shazam and SoundHound)

Fourier Transform

- Given the original signal, $f(t)$, the Fourier transform is denoted by

$$
F(j \omega)=\int_{-\infty}^{\infty} f(t) e^{-2 j \omega t} d t
$$

- It decomposes the signal in the time domain into the frequency domain. For example:

(Source: Time-Frequency Analysis of Musical Instruments)

UMassAmherst

Fourier Transform

- The square wave on the top left is composed of a sum of multiple sine waves.
- Fourier Transform allows us to visualize a signal in the frequency domain, showing all its components, called harmonics.
- The Fourier Transform is also useful to find distortions in a signal (among other applications).

Discrete Fourier Transform (DFT)

- The DFT is a discrete representation of the continuous Fourier transform, which can be fed into a computer.
- Let N samples be denoted by $r=0,1, \ldots, N-1$

$$
A_{r}=\sum_{k=0}^{N-1} X_{k} e^{-2 j \omega k T}
$$

A_{r} is the $r^{t h}$ coefficient of the DFT.
X_{k} is the $k^{t h}$ sample of the time series.

- Using conventional methods, the DFT algorithm takes $\boldsymbol{O}\left(\boldsymbol{N}^{2}\right)$ operations.

Fast Fourier Transform (FFT)

- It is a numerically efficient way to calculate the DFT
- It was originally developed by Gauss around 1805, but rediscovered by Cooley and Tukey in 1965
- The FFT algorithm exploits the symmetries of $e^{-j \frac{2 \pi}{N} k n}$

Let $W_{N}=e^{-j \frac{2 \pi}{N}}$

1. Complex conjugate symmetry $\quad W_{N}^{k(N-n)}=W_{N}^{-k n}=\left(W_{N}^{k n}\right)^{*}$
2. Periodicity in n, k
$W_{N}^{k n}=W_{N}^{k(N+n)}=W_{N}^{(k+N) n}$

Fast Fourier Transform (FFT)

- Uses divide and conquer algorithm to simplify the number of operations (break big FFT into smaller FFT, easier to solve)

1. Divide into even and odd summations of size ($N / 2$). This is called decimation in time:
Y_{k} : even-numbered points ($X_{0}, X_{2}, X_{4}, \ldots$)
Z_{k} : odd-numbered points ($X_{1}, X_{3}, X_{5}, \ldots$)

$$
\begin{gathered}
A_{r}=\sum_{k=0}^{\frac{N}{2}-1} Y_{k} e^{-\frac{4 \pi j r k}{N}}+e^{\frac{-2 \pi j r}{N}} \sum_{k=0}^{\frac{N}{2}-1} Z_{k} e^{-\frac{4 \pi j r k}{N}} \\
r=0,1, \ldots, \frac{N}{2}-1
\end{gathered}
$$

Fast Fourier Transform (FFT)

2. Conquer: recursively compute Y_{k} and Z_{k} Y_{k} and Z_{k} can each be divided by 2 (yielding $N / 4$ samples). If $N=2^{n}$, we can make n such reductions.
3. Combine

$$
A_{r}=Y_{k}\left(X^{2}\right)+x \cdot Z_{k}\left(X^{2}\right)
$$

- The FFT algorithm takes $\boldsymbol{O}\left(\boldsymbol{N} \log _{2} \boldsymbol{N}\right)$ operations.

Example for $\mathbf{N}=8$

UMassAmherst

Example for $\mathrm{N}=\mathbf{8}$

- Keep splitting the terms, i.e., each $\frac{N}{2}=2 * \frac{N}{4}$ DFTs
- We can split $\log _{2} N$ times
- As N gets large

$$
\approx O\left(N \log _{2} N\right)
$$

DFT algorithm implementation in Python

```
import numpy as np
from timeit import Timer
pi2 = np.pi * 2
def DFT(x):
    N = len(x)
    FmList = []
    for m in range(N):
        Fm = 0.0
        for n in range(N):
            Fm += x[n] * np.exp(- 1j * pi2 * m * n / N)
        FmList.append(Fm / N)
    return FmList
N = 1000
x = np.arange(N)
t = Timer(lambda: DFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
```


DFT Performance

DFT Computation Time

All this and following experiments were run on a virtual machine running Ubuntu 18.04 LTS with one processor (Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz) and 3GB of memory.

FFT algorithm implementation in Python

```
# Recursive FFT function
import numpy as np
def FFT(x):
    N = len(x)
    if N <= 1: return x
    even = FFT(x[0::2])
    odd = FFT(x[1::2])
    T = [np.exp(-2j * np.pi * k / N) * odd[k] for k in range(N // 2)]
    return [even[k] + T[k] for k in range(N // 2)] + \
        [even[k] - T[k] for k in range(N // 2)]
N = 1024
x = np.random.random(N)
t = Timer(lambda: FFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
```

FFT Performance
DFT vs. FFT

Numpy implementations

```
# FFT example using the Numpy fftpack
import numpy as np
from timeit import Timer
N = 10000
x = np.arange(N)
t = Timer(lambda: np.fft.fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
```


Scipy implementations

```
# FFT example using the SciPy fftpack
import scipy
from scipy.fftpack import fft
from timeit import Timer
N = 10000
x = scipy.arange(N)
t = Timer(lambda: fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
```


To put things into perspective

FFT - Numpy FFT - SciPy FFT

UMassAmherst

Application - Audio Fingerprinting

- Audio fingerprinting is a signature that summarizes an audio recording
- Also known as Content-Based audio Identification (CBID)
- The best known application are apps like Shazam and SoundHound, that link unlabeled audio recordings to a corresponding metadata (song name and artist, for instance)

Background on Digital Audio

- Sampling: the standard sampling rate in digital music, such as HIFI, is 44,100 samples per second (from Nyquist theorem $-2 \times 20 \mathrm{kHz}$)
- Quantization: the standard quantization uses 16 bits, or 65,536 levels
- PCM or Pulse Code Modulation: is the representation of the analog signal into zeros and ones
- This means that each second of music will have 44,100 samples per channel (one channel - Mono; two channels - Stereo)
E.g.: 3 minutes of stereo song will have $15,876,000$ samples

How to fingerprint an Audio

- We use the FFT to analyze the audio signal in the frequency domain
- Then we create a spectrogram of the song, a visual representation of the frequencies as they vary in time
- Amplitude:

Red color - higher value, Green color - lower value

Finding Peaks

UMassAmherst

Fingerprint Hashing

- We hash the frequency of peaks and the time difference between them
- The result is a unique fingerprint for the song
- Each app has its own hashing function to uniquely identify a song

22

UMassAmherst
The Commonwealth's Flagship Campus

